Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations
نویسندگان
چکیده
Fluorinated amorphous carbon films exhibit superlow friction under vacuum, but are prone to catastrophic failure. Thus far, the intrinsic failure mechanism remains unclear. A prevailing view is that the failure of amorphous carbon film results from the plastic deformation of substrates or strong adhesion between two contacted surfaces. In this paper, using first-principles and molecular dynamics methodology, combining with compressive stress-strain relation, we firstly demonstrate that the plastic deformation induces graphitization resulting in strong adhesion between two contacted surfaces under vacuum, which directly corresponds to the cause of the failure of the films. In addition, sliding contact experiments are conducted to study tribological properties of iron and fluorinated amorphous carbon surfaces under vacuum. The results show that the failure of the film is directly attributed to strong adhesion resulting from high degree of graphitization of the film, which are consistent with the calculated results.
منابع مشابه
A near-wearless and extremely long lifetime amorphous carbon film under high vacuum
Prolonging wear life of amorphous carbon films under vacuum was an enormous challenge. In this work, we firstly reported that amorphous carbon film as a lubricant layer containing hydrogen, oxygen, fluorine and silicon (a-C:H:O:F:Si) exhibited low friction (~0.1), ultra-low wear rate (9.0 × 10(-13) mm(3) N(-1) mm(-1)) and ultra-long wear life (>2 × 10(6) cycles) under high vacuum. We systematic...
متن کاملCarbon Fluoride, CFx: Structural Diversity as Predicted by First Principles
Fluorinated carbon-based thin films offer a wide range of properties for many technological applications that depend on the microstructure of the films. To gain a better understanding on the role of fluorine in the structural formation of these films, CFx systems based on graphenelike fragments were studied by first principles calculations. Generally, the F concentration determines the type of ...
متن کاملA First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملFirst principles studies on band structures and density of states of graphite surface oxides
Graphite oxide constitutes carbon network with oxygen atoms both on hexagonal arrangement and the edge sites. Structural and electronic properties for graphite-oxygen complexes have been explored using first-principles total-energy calculations within the local density approximation (LDA). Band structures and density of states for the propose carbon 3D models are reported. A finite energy gap and...
متن کاملFirst principles studies on band structures and density of states of graphite surface oxides
Graphite oxide constitutes carbon network with oxygen atoms both on hexagonal arrangement and the edge sites. Structural and electronic properties for graphite-oxygen complexes have been explored using first-principles total-energy calculations within the local density approximation (LDA). Band structures and density of states for the propose carbon 3D models are reported. A finite energy gap and...
متن کامل